High School Mathematics

Geometry Vocabulary Word Wall Cards

Table of Contents

Reasoning, Lines, and
Transformations
Basics of Geometry 1
Basics of Geometry 2
Geometry Notation
Logic Notation
Set Notation
Conditional Statement
Converse
Inverse
Contrapositive
Symbolic Representations
Deductive Reasoning
Inductive Reasoning
Proof
Properties of Congruence
Law of Detachment
Law of Syllogism
Counterexample
Perpendicular Lines
Parallel Lines
Skew Lines
Transversal
Corresponding Angles
Alternate Interior Angles
Alternate Exterior Angles
Consecutive Interior Angles
Parallel Lines
Midpoint
Midpoint Formula

Slope Formula
Slope of Lines in Coordinate Plane
Distance Formula
Line Symmetry
Point Symmetry
Rotation (Origin)
Reflection
Translation
Dilation
Rotation (Point)

Perpendicular Bisector

Constructions:

- A line segment congruent to a given line segment
- Perpendicular bisector of a line segment
- A perpendicular to a given line from a point not on the line
- A perpendicular to a given line at a point on the line
- A bisector of an angle
- An angle congruent to a given angle
- A line parallel to a given line through a point not on the given line
- An equilateral triangle inscribed in a circle
- A square inscribed in a circle
- A regular hexagon inscribed in a circle
- An inscribed circle of a triangle
- A circumscribed circle of a triangle

- A tangent line from a point outside a given circle to the circle	Rectangle
	Rhombus
	Square
Triangles	Trapezoids
Classifying Triangles by Sides	Circle
Classifying Triangles by Angles	Circles
Triangle Sum Theorem	Circle Equation
Exterior Angle Theorem	Lines and Circles
Pythagorean Theorem	Secant
Angle and Sides Relationships	Tangent
Triangle Inequality Theorem	Central Angle
Congruent Triangles	Measuring Arcs
SSS Triangle Congruence Postulate	Arc Length
SAS Triangle Congruence Postulate	Secants and Tangents
HL Right Triangle Congruence	Inscribed Angle
ASA Triangle Congruence Postulate	Area of a Sector
AAS Triangle Congruence Theorem	Inscribed Angle Theorem 1
Similar Polygons	Inscribed Angle Theorem 2
Similar Triangles and Proportions	Inscribed Angle Theorem 3
AA Triangle Similarity Postulate	Segments in a Circle
SAS Triangle Similarity Theorem	Segments of Secants Theorem
SSS Triangle Similarity Theorem	Segment of Secants and Tangents
Altitude of a Triangle	Theorem
Median of a Triangle	
Concurrency of Medians of a Triangle	Three-Dimensional Figures
$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem	Cone
$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem	Cylinder
Geometric Mean	Polyhedron
Trigonometric Ratios	Similar Solids Theorem
Inverse Trigonometric Ratios	Sphere
Area of a Triangle	Pyramid
Polygons and Circles Polygon Exterior Angle Sum Theorem	Revision: November 2014 - Contrapositive card corrected "converse" to "contrapositive" in
Polygon Interior Angle Sum Theorem	example
Regular Polygon	
Properties of Parallelograms	

Reasoning, Lines, and
 Transformations

Basics of Geometry

Point - A point has no dimension. P It is a location on a plane. It is represented by a dot.
point P
Line - A line has one dimension. It is an infinite set of points represented by a line with two arrowheads that extends without end.
m
A
$\overleftrightarrow{A B}$ or $\overleftrightarrow{B A}$ or line m
Plane - A plane has two dimensions extending without end. It is often represented by a parallelogram.
plane ABC or plane N

Basics of Geometry

Line segment - A line segment consists of two endpoints and all the points between them.

$\overline{\mathrm{AB}}$ or $\overline{\mathrm{BA}}$

Ray - A ray has one endpoint and extends without end in one direction.

Note: Name the endpoint first. $\overrightarrow{B C}$ and $\overrightarrow{C B}$ are different rays.

Geometry Notation

 Symbols used to represent statements or operations in geometry.| $\overrightarrow{B C}$ | segment $B C$ |
| :---: | :--- |
| $\overrightarrow{\mathrm{BC}}$ | ray $B C$ |
| $\overleftrightarrow{B C}$ | line $B C$ |
| BC | length of $B C$ |
| $\angle A B C$ | angle $A B C$ |
| $\mathrm{~m} \angle \mathrm{ABC}$ | measure of angle $A B C$ |
| $\triangle \mathrm{ABC}$ | triangle $A B C$ |
| $\\|$ | is parallel to |
| \perp | is perpendicular to |
| \cong | is congruent to |
| \sim | is similar to |

Logic Notation

V	or
Λ	and
\rightarrow	read "implies", if... then...
\leftrightarrow	read "if and only if"
iff	read "if and only if"
\sim	not
\therefore	therefore

Set Notation

$\}$	empty set, null set
$\boldsymbol{\varnothing}$	empty set, null set
$\boldsymbol{x} \boldsymbol{l}$	read " x such that"
$\boldsymbol{x}:$	read " x such that"
\boldsymbol{U}	union, disjunction, or
\cap	intersection, conjunction, and

Conditional

Statement

a logical argument consisting of a set of premises, hypothesis (p), and conclusion (q)

hypothesis

Symbolically:

$$
\text { if } p \text {, then } q \quad p \rightarrow q
$$

Converse

formed by interchanging the hypothesis and conclusion of a conditional statement

Conditional: If an angle is a right angle,

 then its measure is 90°.Converse: If an angle measures 90°, then the angle is a right angle.

Symbolically:

$$
\text { if } q \text {, then } p \quad q \rightarrow p
$$

Inverse

formed by negating the hypothesis and conclusion of a conditional statement

Conditional: If an angle is a right angle, then its measure is 90°.

Inverse: If an angle is not a right angle, then its measure is not 90°.

Symbolically:
if $\sim p$, then $\sim q$

Contrapositive

formed by interchanging and negating the hypothesis and conclusion of a conditional statement

Conditional: If an angle is a right angle, then its measure is 90°.

Contrapositive: If an angle does not measure 90°, then the angle is not a right angle.

Symbolically:
if $\sim q$, then $\sim p$

Symbolic

Representations

Conditional	if p, then q	$p \rightarrow q$
Converse	if q, then p	$q \rightarrow p$
Inverse	if not p, then not q	$\sim p \rightarrow \sim q$
if not q,		
Contrapositive		
then not p		

Deductive

 Reasoning

 Reasoning}

method using logic to draw conclusions

 based upon definitions, postulates, and theorems
Example:
 Prove $(x \cdot y) \cdot z=(z \cdot y) \cdot x$.

Step 1: $(x \cdot y) \cdot z=z \cdot(x \cdot y)$, using commutative property of multiplication.
Step 2: $=z \cdot(y \cdot x)$, using commutative property of multiplication.
Step 3: $=(z \cdot y) \cdot x$, using associative property of multiplication.

Inductive Reasoning

method of drawing conclusions from a limited set of observations

Example:

Given a pattern, determine the rule for the pattern.

Determine the next number in this sequence $1,1,2,3,5,8,13 \ldots$

Proof

a justification logically valid and based on initial assumptions, definitions, postulates, and theorems

Example:
Given: $\angle 1 \cong \angle 2$
Prove: $\angle 2 \cong \angle 1$

Statements	Reasons
$\angle 1 \cong \angle 2$	Given
$\mathrm{m} \angle 1=\mathrm{m} \angle 2$	Definition of congruent angles
$\mathrm{m} \angle 2=\mathrm{m} \angle 1$	Symmetric Property of Equality
$\angle 2 \cong \angle 1$	Definition of congruent angles

Properties of Congruence

Reflexive Property	For all angles $A, \angle \mathrm{~A} \cong \angle \mathrm{~A}$. An angle is congruent to itself.
Symmetric Property	For any angles A and B, If $\angle \mathrm{A} \cong \angle \mathrm{B}$, then $\angle \mathrm{B} \cong \angle \mathrm{A}$. Order of congruence does not matter.
Transitive	For any angles A, B, and C, Property If two angles are both congruent to a third angle, then the first two angles are also congruent.

Law of Detachment

 deductive reasoning stating that if the hypothesis of a true conditional statement is true then the conclusion is also true

Example:
If $m \angle A>90^{\circ}$, then $\angle A$ is an obtuse angle. $\mathrm{m} \angle \mathrm{A}=120^{\circ}$.

Therefore, $\angle \mathrm{A}$ is an obtuse angle.
If $p \rightarrow q$ is a true conditional statement and p is true, then q is true.

Law of Syllogism

deductive reasoning that draws a new conclusion from two conditional statements when the conclusion of one is the hypothesis of the other

Example:

1. If a rectangle has four equal side lengths, then it is a square.
2. If a polygon is a square, then it is a regular polygon.
3. If a rectangle has four equal side lengths, then it is a regular polygon.

If $p \rightarrow q$ and $q \rightarrow r$ are true conditional statements, then $p \rightarrow r$ is true.

Counterexample

specific case for which a conjecture is false

Example:

Conjecture: "The product of any two numbers is odd."

Counterexample: 2-3=6

One counterexample proves a conjecture false.

Perpendicular Lines

two lines that intersect to form a right angle

Line m is perpendicular to line n. $m \perp n$

Parallel Lines

lines that do not intersect and are coplanar

Parallel lines have the same slope.

Skew Lines

lines that do not intersect and are not coplanar

Transversal

a line that intersects at least two other lines

Line t is a transversal.

Corresponding

Angles

angles in matching positions when a transversal crosses at least two lines

Examples:

1) $\angle 2$ and $\angle 6$
 2) $\angle 3$ and $\angle 7$

Alternate Interior

 Angles
angles inside the lines and on opposite

 sides of the transversal

Examples:

1) $\angle 1$ and $\angle 4$
 2) $\angle 2$ and $\angle 3$

Alternate Exterior

Angles

angles outside the two lines and on opposite sides of the transversal

Examples:

1) $\angle 1$ and $\angle 4$
2) $\angle 2$ and $\angle 3$

Consecutive Interior

Angles

angles between the two lines and on the same side of the transversal

Examples:

$$
\begin{aligned}
& \text { 1) } \quad \angle 1 \text { and } \angle 2 \\
& \text { 2) } \quad \angle 3 \text { and } \angle 4
\end{aligned}
$$

Parallel Lines

Line a is parallel to line b when

Corresponding angles $\angle 1 \cong \angle 5, \angle 2 \cong \angle 6$, are congruent

Alternate interior angles are congruent Alternate exterior angles are congruent
Consecutive interior angles are supplementary

$$
\begin{aligned}
& m \angle 3+m \angle 5=180^{\circ} \\
& m \angle 4+m \angle 6=180^{\circ}
\end{aligned}
$$

Midpoint

divides a segment into two congruent segments

Example: M is the midpoint of $\overline{C D}$
 $$
\begin{aligned} & \overline{\mathrm{CM}} \cong \overline{\mathrm{MD}} \\ & \mathrm{CM}=\mathrm{MD} \end{aligned}
$$

Segment bisector may be a point, ray, line, line segment, or plane that intersects the segment at its midpoint.

Midpoint Formula

given points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$

$$
\text { midpoint } \mathrm{M}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Slope Formula

ratio of vertical change to horizontal change

$$
\text { slope }=m=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Slopes of Lines

Parallel lines have the same slope.

Perpendicular lines have slopes whose product is -1 .

Vertical lines have undefined slope.

Horizontal lines have 0 slope.

Example:

The slope of line $n=-2$. The slope of line $p=\frac{1}{2}$.

$$
-2 \cdot \frac{1}{2}=-1 \text {, therefore, } n \perp p \text {. }
$$

Distance Formula

 given points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$$$
\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The distance formula is based on the Pythagorean Theorem.

Line Symmetry

Point Symmetry

pod

Rotation

Preimage	Image
$A(-3,0)$	$A^{\prime}(0,3)$
$B(-3,3)$	$B^{\prime}(3,3)$
$C(-1,3)$	$C^{\prime}(3,1)$
$D(-1,0)$	$D^{\prime}(0,1)$

Pre-image has been transformed by a 90° clockwise rotation about the origin.

Rotation

Pre-image A has been transformed by a 90° clockwise rotation about the point $(2,0)$ to form image A^{\prime}.

Reflection

Preimage	Image
$D(1,-2)$	$D^{\prime}(-1,-2)$
$E(3,-2)$	$E^{\prime}(-3,-2)$
$F(3,2)$	$F^{\prime}(-3,2)$

Translation

Preimage	Image
$A(1,2)$	$A^{\prime}(-2,-3)$
$B(3,2)$	$B^{\prime}(0,-3)$
$C(4,3)$	$C^{\prime}(1,-2)$
$D(3,4)$	$D^{\prime}(0,-1)$
$E(1,4)$	$E^{\prime}(-2,-1)$

Dilation

Preimage	Image
$A(0,2)$	$A^{\prime}(0,4)$
$B(2,0)$	$B^{\prime}(4,0)$
$C(0,0)$	$C^{\prime}(0,0)$

Preimage	Image
E	E^{\prime}
F	F^{\prime}
G	G^{\prime}
H	H^{\prime}

Perpendicular Bisector

 a segment, ray, line, or plane that is perpendicular to a segment at its midpoint

Example:
Line s is perpendicular to $\overline{\mathrm{XY}}$.
M is the midpoint, therefore $\overline{X M} \cong \overline{\mathrm{MY}}$.
Z lies on line s and is equidistant from X and Y.

Constructions

Traditional constructions involving a compass and straightedge reinforce students' understanding of geometric concepts. Constructions help students visualize Geometry.
There are multiple methods to most geometric constructions. These cards illustrate only one method. Students would benefit from experiences with more than one method and should be able to justify each step of geometric constructions.

Construct

segment $C D$ congruent to segment $A B$

Fig. 1

Fig. 2

Construct

 a perpendicular to a line from point P not on the line

Construct

a perpendicular to a line from point P on the line

Fig. 1

Fig. 3

Fig. 4
Fig. 2

Construct a bisector of $\angle A$

Fig. 1

Fig. 2

Fig. 3
Fig. 4

Construct

Fig. 1
Fig. 2

Fig. 3

Fig. 4

Construct

line n parallel to line m through

 point P not on the line

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Construct

an equilateral triangle inscribed

Fig. 1

Fig. 2

Fig. 3

Construct

a square inscribed in a circle

Fig. 1 Draw a diameter.

Fig. 2

Fig. 3

Fig. 4

Construct

 a regular hexagon inscribed

Fig. 1
in a circle

Fig. 2

Fig. 3

Fig. 4

Construct

the inscribed circle of a triangle

Fig. 2

Fig. $4 \cdot$
Fig. 3

Construct

 the circumscribed circle of a triangleFig. 1

Construct

a tangent from a point outside a

 given circle to the circle

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Triangles

Classifying Triangles

Scalene	Isosceles	Equilateral
No congruent sides	At least 2 congruent sides	3 congruent sides
No congruent angles	2 or 3 congruent angles	3 congruent angles

All equilateral triangles are isosceles.

Classifying Triangles

Acute	Right	Obtuse	Equiangular
3 acute	1 right angle	1 abtuse angle	3 congruent angles
3 angles, each less than 90°	equals 90°	1 angle eqeater than 90°	3 angles, each measures 60°

Triangle Sum

Theorem

measures of the interior angles of a triangle $=180^{\circ}$

$$
\mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{C}=180^{\circ}
$$

Exterior Angle

Theorem

Exterior angle, $m \angle 1$, is equal to the sum of the measures of the two nonadjacent interior angles.

$$
\mathrm{m} \angle 1=\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{C}
$$

Pythagorean

Theorem

hypotenuse

If $\triangle A B C$ is a right triangle, then $a^{2}+b^{2}=c^{2}$.

Conversely, if $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a right triangle.

Angle and Side Relationships

$\angle A$ is the largest angle, therefore $\overline{B C}$ is the longest side.

> $\angle B$ is the smallest angle, therefore $\overline{\mathrm{AC}}$ is the shortest side.

Triangle Inequality Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Example:

$$
\begin{gathered}
A B+B C>A C \quad A C+B C>A B \\
A B+A C>B C
\end{gathered}
$$

Congruent Triangles

Two possible congruence statements:
$\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$
$\triangle \mathrm{BCA} \cong \triangle \mathrm{EDF}$
Corresponding Parts of Congruent Figures

$$
\begin{array}{ll}
\angle \mathrm{A} \cong \angle \mathrm{~F} & \mathrm{AB} \cong \mathrm{FE} \\
\angle \mathrm{~B} \cong \angle \mathrm{E} & \mathrm{BC} \cong \mathrm{ED} \\
\angle \mathrm{C} \cong \angle \mathrm{D} & \mathrm{CA} \cong \mathrm{DF}
\end{array}
$$

SSS Triangle

Congruence

 Postulate

Example:

$$
\begin{aligned}
& \text { If Side } \overline{\mathrm{AB}} \cong \overline{\mathrm{FE}}, \\
& \text { Side } \overline{\mathrm{AC}} \cong \overline{\mathrm{FD}}, \text { and } \\
& \text { Side } \overline{\mathrm{BC}} \cong \overline{\mathrm{ED}}, \\
& \text { then } \triangle \mathrm{ABC} \cong \Delta \mathrm{FED} .
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { If Side } \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}, \\
& \text { Angle } \angle \mathrm{A} \cong \angle \mathrm{D} \text {, and } \\
& \text { Side } \overline{\mathrm{AC}} \cong \overline{\mathrm{DF}} \text {, } \\
& \text { then } \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF} \text {. }
\end{aligned}
$$

HL Right Triangle

Congruence

Example:

If Hypotenuse $\overline{R S} \cong \overline{X Y}$, and Leg $\overline{\mathrm{ST}} \cong \overline{\mathrm{YZ}}$,
then $\Delta \mathrm{RST} \cong \Delta X Y Z$.

ASA Triangle

 Congruence Postulate

Example:

If Angle $\angle \mathrm{A} \cong \angle \mathrm{D}$,
 Side $\overline{A C} \cong \overline{D F}$, and
 Angle $\angle \mathrm{C} \cong \angle \mathrm{F}$
 then $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

AAS Triangle

Congruence

Theorem

Example:

$$
\begin{aligned}
& \text { If Angle } \angle \mathrm{R} \cong \angle \mathrm{X}, \\
& \text { Angle } \angle \mathrm{S} \cong \angle \mathrm{Y} \text {, and } \\
& \text { Side } \overline{\mathrm{ST}} \cong \overline{\mathrm{YZ}} \\
& \text { then } \triangle \mathrm{RST} \cong \triangle \mathrm{XYZ} \text {. }
\end{aligned}
$$

Similar Polygons

$\mathrm{ABCD} \sim \mathrm{HGFE}$	
Angles	Sides
$\angle \mathrm{A}$ corresponds to $\angle \mathrm{H}$	$\overline{\mathrm{AB}}$ corresponds to $\overline{\mathrm{HG}}$
$\angle \mathrm{B}$ corresponds to $\angle \mathrm{G}$	$\overline{\mathrm{BC}}$ corresponds to $\overline{\mathrm{GF}}$
$\angle \mathrm{C}$ corresponds to $\angle \mathrm{F}$	$\overline{\mathrm{CD}}$ corresponds to $\overline{\mathrm{FE}}$
$\angle \mathrm{D}$ corresponds to $\angle \mathrm{E}$	$\overline{\mathrm{DA}}$ corresponds to $\overline{\mathrm{EH}}$

Corresponding angles are congruent.
 Corresponding sides are proportional.

Similar Polygons

 and Proportions

Corresponding vertices are listed in the same order.
Example: $\quad \triangle \mathrm{ABC} \sim \Delta \mathrm{HGF}$

$$
\begin{aligned}
\frac{A B}{H G} & =\frac{B C}{G F} \\
\frac{12}{x} & =\frac{6}{4}
\end{aligned}
$$

The perimeters of the polygons are also proportional.

AA Triangle

Similarity Postulate

Example:

> If Angle $\angle \mathrm{R} \cong \angle \mathrm{X}$ and Angle $\angle \mathrm{S} \cong \angle \mathrm{Y}$,
then $\Delta \mathrm{RST} \sim \Delta \mathrm{XYZ}$.

SAS Triangle Similarity Theorem

Example:

$$
\text { If } \begin{aligned}
\angle \mathrm{A} & \cong \angle \mathrm{D} \text { and } \\
\frac{A B}{D E} & =\frac{A C}{D F}
\end{aligned}
$$

then $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$.

SSS Triangle

Similarity Theorem

Example:

$$
\text { If } \frac{R T}{X Z}=\frac{R S}{X Y}=\frac{S T}{Y Z}
$$

then $\Delta R S T \sim \Delta X Y Z$.

Altitude of a

Triangle

a segment from a vertex perpendicular to the opposite side

Every triangle has 3 altitudes.
The 3 altitudes intersect at a point called the orthocenter.

Median of a

Triangle

D is the midpoint of $\overline{A B}$; therefore, $\overline{C D}$ is a median of $\triangle A B C$.

 Every triangle has 3 medians.
Concurrency of

Medians of a

Triangle

Medians of $\triangle A B C$ intersect at P and

$$
A P=\frac{2}{3} A F, \quad C P=\frac{2}{3} C E, \quad B P=\frac{2}{3} B D .
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle

Theorem

Given: \quad short leg $=x$

Using equilateral triangle,
hypotenuse $=2 \cdot x$
Applying the Pythagorean Theorem, longer leg $=x \cdot \sqrt{3}$

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle

Theorem

Given: \quad leg $=x$,

 then applying the Pythagorean Theorem; hypotenuse ${ }^{2}=x^{2}+x^{2}$ hypotenuse $=x \sqrt{2}$
Geometric Mean

of two positive numbers a and b is the positive number x that satisfies

$$
\begin{gathered}
\frac{a}{x}=\frac{x}{b} \\
x^{2}=\text { ab } \text { and } x=\sqrt{a b} .
\end{gathered}
$$

In a right triangle, the length of the altitude is the geometric mean of the lengths of the two segments.

Example:
 $$
\frac{9}{x}=\frac{x}{4}, \text { so } x^{2}=36 \text { and } x=\sqrt{36}=6 .
$$

Trigonometric

 Ratios
$\sin A=\frac{\text { side opposite } \angle A}{\text { hypotenuse }}=\frac{a}{c}$
$\cos A=\frac{\text { side adjacent } \angle A}{\text { hypotenuse }}=\frac{b}{c}$
$\tan \mathrm{A}=\frac{\text { side opposite } \angle \mathrm{A}}{\text { side adjacent to } \angle \mathrm{A}}=\frac{a}{b}$

Inverse

Trigonometric

 Ratios

Definition	Example
If $\tan A=x$, then $\tan ^{-1} x=m \angle A$.	$\tan ^{-1} \frac{a}{b}=m \angle A$
If $\sin A=y$, then $\sin ^{-1} y=m \angle A$.	$\sin ^{-1} \frac{a}{c}=m \angle A$
If $\cos A=z$, then $\cos ^{-1} z=m \angle A$.	$\cos ^{-1} \frac{b}{c}=m \angle A$

Area of Triangle

$$
\begin{gathered}
\sin \mathrm{C}=\frac{h}{a} \\
h=a \cdot \sin \mathrm{C}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{A}=\frac{1}{2} b h \text { (area of a triangle formula) } \\
\text { By substitution, } \mathrm{A}=\frac{1}{2} b(a \cdot \sin \mathrm{C}) \\
\mathrm{A}=\frac{1}{2} a b \cdot \sin \mathrm{C}
\end{gathered}
$$

Polygons and Circles

Polygon Exterior
 Angle Sum Theorem

The sum of the measures of the exterior angles of a convex polygon is 360°.

Example:
$m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5=360^{\circ}$

Polygon Interior
 Angle Sum Theorem

The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$.

$$
\mathrm{S}=\mathrm{m} \angle 1+\mathrm{m} \angle 2+\ldots+\mathrm{m} \angle n=(n-2) \cdot 180^{\circ}
$$

Example:

$$
\begin{aligned}
& \text { If } n=5 \text {, then } S=(5-2) \cdot 180^{\circ} \\
& S=3 \cdot 180^{\circ}=540^{\circ}
\end{aligned}
$$

Regular Polygon

a convex polygon that is both equiangular and equilateral

Equilateral Triangle Each angle measures 60°.

Square

Each angle measures 90°.

Regular Pentagon

Each angle measures 108°.

Regular Hexagon Each angle measures 120°.

Regular Octagon
Each angle measures 135°.

Properties of Parallelograms

- Opposite sides are parallel and congruent.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- The diagonals bisect each other.

Rectangle

- A rectangle is a parallelogram with four right angles.
- Diagonals are congruent.
- Diagonals bisect each other.

Rhombus

- A rhombus is a parallelogram with four congruent sides.
- Diagonals are perpendicular.
- Each diagonal bisects a pair of opposite angles.

Square

- A square is a parallelogram and a rectangle with four congruent sides. - Diagonals are perpendicular. - Every square is a rhombus.

Trapezoid

- A trapezoid is a quadrilateral with exactly one pair of parallel sides.
- Isosceles trapezoid - A trapezoid where the two base angles are equal and therefore the sides opposite the base angles are also equal.

Circle

all points in a plane equidistant from a given point called the center

- Point O is the center.
- $\overline{\mathrm{MN}}$ passes through the center O and therefore, $\overline{\mathrm{MN}}$ is a diameter.
- $\overline{\mathrm{PP}}, \overline{\mathrm{OM}}$, and $\overline{\mathrm{ON}}$ are radii and $\overline{O P} \cong \overline{O M} \cong \overline{O N}$.
- $\overline{\mathrm{RS}}$ and $\overline{\mathrm{MN}}$ are chords.

Circles

A circle is considered "inscribed" if it is tangent to each side of the polygon.

Circle Equation

$$
x^{2}+y^{2}=r^{2}
$$

circle with radius r and center at the origin

standard equation of a circle
$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$
with center (h, k) and radius r

Lines and Circles

- Secant $(\overleftrightarrow{A B})$ - a line that intersects a circle in two points.
- Tangent $(\stackrel{C D}{C D})$ - a line (or ray or segment) that intersects a circle in exactly one point, the point of tangency, D.

Secant

If two lines intersect in the interior of a circle, then the measure of the angle formed is one-half the sum of the measures of the intercepted arcs.

$$
m \angle 1=\frac{1}{2}\left(x^{\circ}+y^{\circ}\right)
$$

Tangent

A line is tangent to a circle if and only if the line is perpendicular to a radius drawn to the point of tangency.

$\overleftrightarrow{\mathrm{QS}}$ is tangent to circle R at point Q . Radius $\overrightarrow{\mathrm{RQ}} \perp \overleftrightarrow{\mathrm{QS}}$

Tangent

If two segments from the same exterior point are tangent to a circle, then they are congruent.

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are tangent to the circle at points B and C.

Therefore, $\overline{A B} \cong \overline{A C}$ and $A C=A B$.

Central Angle

an angle whose vertex is the center of the circle

$\angle A C B$ is a central angle of circle C.

Minor arc - corresponding central angle is less than 180° Major arc - corresponding central angle is greater than 180°

MeasuringArcs

Minor arcs	Major arcs	Semicircles
$m \widehat{A B}=110^{\circ}$	$m \widehat{B D A}=250^{\circ}$	$m \widehat{A D C}=180^{\circ}$
$m \widehat{B C}=70^{\circ}$	$m \widehat{B A C}=290^{\circ}$	$m \widehat{A B C}=180^{\circ}$

The measure of the entire circle is 360°.
The measure of a minor arc is equal to its central angle.
The measure of a major arc is the difference between 360° and the measure of the related minor arc.

Arc Length

$$
\frac{\text { arc length }}{2 \pi r}=\frac{\text { central angle }}{360^{\circ}}
$$

Example:

$$
\begin{aligned}
& \frac{\text { arc length of } \widehat{\mathrm{AB}}}{2 \pi \cdot 4}=\frac{120^{\circ}}{360^{\circ}} \\
& \text { arc length of } \widehat{\mathrm{AB}}=\frac{8}{3} \pi \mathrm{~cm}
\end{aligned}
$$

Secants and

Tangents

Inscribed Angle

angle whose vertex is a point on the circle and whose sides contain chords of the circle

$$
\mathrm{m} \angle \mathrm{BAC}=\frac{1}{2} \mathrm{~m} \widehat{\mathrm{BC}}
$$

Area of a Sector

 region bounded by two radii and their intercepted arc
$\frac{\text { area of sector }}{\pi \mathrm{r}^{2}}=\frac{\text { measure of intercepted arc }}{360^{\circ}}$
Example:

$$
\begin{aligned}
& \frac{\text { area of sector } A C B}{\pi \cdot 4^{2}}=\frac{120^{\circ}}{360^{\circ}} \\
& \text { area of sector } A C B=\frac{16}{3} \pi \mathrm{~cm}
\end{aligned}
$$

Inscribed Angle

Theorem

If two inscribed angles of a circle intercept the same arc, then the angles are congruent.
$\angle B D C \cong \angle B A C$

Inscribed Angle
 Theorem

$\mathrm{m} \angle \mathrm{BAC}=90^{\circ}$ if and only if $\overline{\mathrm{BC}}$ is a diameter of the circle.

Inscribed Angle Theorem

$\mathrm{M}, \mathrm{A}, \mathrm{T}$, and H lie on circle J if and only if

$$
\begin{gathered}
\mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{H}=180^{\circ} \text { and } \\
\mathrm{m} \angle \mathrm{~T}+\mathrm{m} \angle \mathrm{M}=180^{\circ} .
\end{gathered}
$$

Segments in a

Circle

If two chords intersect in a circle, then $a \cdot b=c \cdot d$.

Example:

$$
\begin{aligned}
12(6) & =9 x \\
72 & =9 x \\
8 & =x
\end{aligned}
$$

Segments of

Secants Theorem

$$
A B \cdot A C=A D \cdot A E
$$

Example:

$$
\begin{gathered}
6(6+x)=9(9+16) \\
36+6 x=225 \\
x=31.5
\end{gathered}
$$

Segments of

Secants and

Tangents Theorem

$$
A E^{2}=A B \cdot A C
$$

Example:

$$
\begin{aligned}
25^{2} & =20(20+x) \\
625 & =400+20 x \\
x & =11.25
\end{aligned}
$$

Three-Dimensional

 Figures
Cone

solid that has a circular base, an apex, and a lateral surface

Cylinder

solid figure with congruent circular bases that lie in parallel planes

height (h)

$$
\mathrm{V}=\pi r^{2} h
$$

L.A. (lateral surface area) $=2 \pi r h$
S.A. (surface area) $=2 \pi r^{2}+2 \pi r h$

Polyhedron

solid that is bounded by polygons, called faces

Similar Solids

Theorem

If two similar solids have a scale factor of a:b, then their corresponding surface areas have a ratio of $a^{2}: b^{2}$, and their corresponding volumes have a ratio of $a^{3}: b^{3}$.
cylinder A ~ cylinder B

Example		
scale factor	$a: b$	$3: 2$
ratio of surface areas	$a^{2}: b^{2}$	$9: 4$
ratio of volumes	$a^{3}: b^{3}$	$27: 8$

Sphere

a three-dimensional surface of which all points are equidistant from a fixed point

S.A. (surface area) $=4 \pi r^{2}$

Pyramid

polyhedron with a polygonal base and triangular faces meeting in a common vertex

