High School Mathematics Geometry Vocabulary Word Wall Cards

Table of Contents

Reasoning, Lines, and Transformations

Basics of Geometry 1
Basics of Geometry 2

Geometry Notation

Logic Notation
Set Notation

Conditional Statement

<u>Converse</u> Inverse

Contrapositive

Symbolic Representations

<u>Deductive Reasoning</u> Inductive Reasoning

Proof

Properties of Congruence

<u>Law of Detachment</u>

Law of Syllogism

Counterexample

Perpendicular Lines

Parallel Lines

Skew Lines

<u>Transversal</u>

Corresponding Angles

<u>Alternate Interior Angles</u>

Alternate Exterior Angles

Consecutive Interior Angles

Parallel Lines

Midpoint

Midpoint Formula

Slope Formula

Slope of Lines in Coordinate Plane

Distance Formula
Line Symmetry
Point Symmetry
Rotation (Origin)

Reflection
Translation
Dilation

Rotation (Point)

Perpendicular Bisector

Constructions:

- A line segment congruent to a given line segment
- Perpendicular bisector of a line segment
- A perpendicular to a given line from a point not on the line
- A perpendicular to a given line at a point on the line
- o A bisector of an angle
- An angle congruent to a given angle
- A line parallel to a given line through a point not on the given line
- An equilateral triangle inscribed in a circle
- o A square inscribed in a circle
- A regular hexagon inscribed in a circle
- o An inscribed circle of a triangle
- A circumscribed circle of a triangle

o A tangent line from a point outside a given circle to the circle

Triangles

Classifying Triangles by Sides

Classifying Triangles by Angles

Triangle Sum Theorem

Exterior Angle Theorem

Pythagorean Theorem

Angle and Sides Relationships

<u>Triangle Inequality Theorem</u>

Congruent Triangles

SSS Triangle Congruence Postulate

SAS Triangle Congruence Postulate

HL Right Triangle Congruence

ASA Triangle Congruence Postulate

AAS Triangle Congruence Theorem

Similar Polygons

Similar Triangles and Proportions

AA Triangle Similarity Postulate

SAS Triangle Similarity Theorem

SSS Triangle Similarity Theorem

Altitude of a Triangle

Median of a Triangle

Concurrency of Medians of a Triangle

30°-60°-90° Triangle Theorem

45°-45°-90° Triangle Theorem

Geometric Mean

Trigonometric Ratios

<u>Inverse Trigonometric Ratios</u>

Area of a Triangle

Polygons and Circles

Polygon Exterior Angle Sum Theorem
Polygon Interior Angle Sum Theorem
Regular Polygon
Properties of Parallelograms

Rectangle

Rhombus

<u>Square</u>

<u>Trapezoids</u>

Circle

Circles

Circle Equation

Lines and Circles

Secant

Tangent

Central Angle

Measuring Arcs

Arc Length

Secants and Tangents

Inscribed Angle

Area of a Sector

<u>Inscribed Angle Theorem 1</u>

Inscribed Angle Theorem 2

Inscribed Angle Theorem 3

Segments in a Circle

Segments of Secants Theorem

Segment of Secants and Tangents

Theorem

Three-Dimensional Figures

Cone

Cylinder

Polyhedron

Similar Solids Theorem

Sphere

Pyramid

Revision:

November 2014 – Contrapositive card - corrected "converse" to "contrapositive" in example

Virginia Department of Education ©2013

Reasoning, Lines, and Transformations

Basics of Geometry

Point – A point has no dimension. P
It is a location on a plane. It is
represented by a dot.

Point P

Line – A line has one dimension. It is an infinite set of points represented by a line with two arrowheads that extends without end.

Plane – A plane has two dimensions extending without end. It is often represented by a parallelogram.

plane ABC or plane N

Basics of Geometry

Line segment – A line segment consists of two endpoints and all the points between them.

 \overline{AB} or \overline{BA}

Ray – A ray has one endpoint and extends without end in one direction.

BC

Note: Name the endpoint first. BC and CB are different rays.

Geometry Notation

Symbols used to represent statements or operations in geometry.

BC	segment BC	
BC	ray BC	
⇔ BC	line BC	
ВС	length of BC	
∠ABC	angle ABC	
m∠ABC	measure of angle ABC	
Δ ABC	triangle ABC	
	is parallel to	
	is perpendicular to	
~	is congruent to	
~	is similar to	

Logic Notation

V	or
Λ	and
\rightarrow	read "implies", if then
\leftrightarrow	read "if and only if"
iff	read "if and only if"
~	not
•	therefore

Set Notation

{}	empty set, null set	
Ø	empty set, null set	
<i>x</i>	read "x such that"	
<i>x</i> :	read "x such that"	
U	union, disjunction, or	
N	intersection, conjunction, and	

Conditional Statement

a logical argument consisting of a set of premises, hypothesis (p), and conclusion (q)

Symbolically:

$$p \rightarrow q$$

Converse

formed by <u>interchanging</u> the hypothesis and conclusion of a conditional statement

Conditional: If <u>an angle is a right angle</u>, then <u>its measure is 90°</u>.

Converse: If <u>an angle measures 90°</u>, then <u>the angle is a right angle</u>.

Symbolically:

if q, then p

 $q \rightarrow p$

Inverse

formed by <u>negating</u> the hypothesis and conclusion of a conditional statement

Conditional: If <u>an angle is a right angle</u>, then <u>its measure is 90°</u>.

Inverse: If <u>an angle is not a right angle</u>, then <u>its measure is not 90°</u>.

Symbolically:

Contrapositive

formed by <u>interchanging</u> and <u>negating</u>
the hypothesis and conclusion of a
conditional statement

Conditional: If <u>an angle is a right angle</u>, then <u>its measure is 90°</u>.

Contrapositive: If <u>an angle does not</u> <u>measure 90°</u>, then <u>the angle is not a</u> <u>right angle</u>.

Symbolically:

$$\sim q \rightarrow \sim p$$

Symbolic Representations

Conditional	if p, then q	p→q	
Converse	if q, then p	$q \rightarrow p$	
Inverse	if not p,	$\sim \sim $	
	then not q		
Contrapositive	if not q,		
	then not p	~q > ~p	

Deductive Reasoning

method using logic to draw conclusions based upon definitions, postulates, and theorems

Example:

Prove $(x \cdot y) \cdot z = (z \cdot y) \cdot x$.

Step 1: $(x \cdot y) \cdot z = z \cdot (x \cdot y)$, using commutative property of multiplication.

Step 2: = $z \cdot (y \cdot x)$, using commutative property of multiplication.

Step 3: = $(z \cdot y) \cdot x$, using associative property of multiplication.

Inductive Reasoning

method of drawing conclusions from a limited set of observations

Example:

Given a pattern, determine the rule for the pattern.

Determine the next number in this sequence 1, 1, 2, 3, 5, 8, 13...

Proof

a justification logically valid and based on initial assumptions, definitions, postulates, and theorems

Example:

Given: <u>∠1</u> ≅ <u>∠2</u>

Prove: $\angle 2 \cong \angle 1$

Statements	Reasons
∠1 ≅ ∠2	Given
m∠1 = m∠2	Definition of congruent angles
m∠2 = m∠1	Symmetric Property of Equality
∠2 ≅ ∠1	Definition of congruent angles

Properties of Congruence

Reflexive Property	For all angles A , $\angle A \cong \angle A$. An angle is congruent to itself.	
Symmetric Property	For any angles A and B , If $\angle A \cong \angle B$, then $\angle B \cong \angle A$. Order of congruence does not matter.	
Transitive Property	For any angles A , B , and C , If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$. If two angles are both congrue to a third angle, then the first two angles are also congruent.	

Law of Detachment

deductive reasoning stating that if the hypothesis of a true conditional statement is true then the conclusion is also true

Example:

If $m\angle A > 90^{\circ}$, then $\angle A$ is an obtuse angle. $m\angle A = 120^{\circ}$.

Therefore, ∠A is an obtuse angle.

If $p \rightarrow q$ is a true conditional statement and p is true, then q is true.

Law of Syllogism

deductive reasoning that draws a new conclusion from two conditional statements when the conclusion of one is the hypothesis of the other

Example:

- 1. If a rectangle has four equal side lengths, then it is a square.
- 2. If a polygon is a square, then it is a regular polygon.
- 3. If a rectangle has four equal side lengths, then it is a regular polygon.

If $p \rightarrow q$ and $q \rightarrow r$ are true conditional statements, then $p \rightarrow r$ is true.

Counterexample

specific case for which a conjecture is false

Example:

Conjecture: "The product of any two numbers is odd."

Counterexample: $2 \cdot 3 = 6$

One counterexample proves a conjecture false.

Perpendicular Lines

two lines that intersect to form a right angle

Line m is perpendicular to line n. $m \perp n$

Parallel Lines

lines that do not intersect and are coplanar

m||nLine m is parallel to line n.

Parallel lines have the same slope.

Skew Lines

lines that do not intersect and are not coplanar

Transversal

a line that intersects at least two other lines

Line t is a transversal.

Corresponding Angles

angles in matching positions when a transversal crosses at least two lines

- 1) $\angle 2$ and $\angle 6$
- 2) ∠3 and ∠7

Alternate Interior Angles

angles inside the lines and on opposite sides of the transversal

- 1) $\angle 1$ and $\angle 4$
- 2) $\angle 2$ and $\angle 3$

Alternate Exterior Angles

angles outside the two lines and on opposite sides of the transversal

- 1) $\angle 1$ and $\angle 4$
- 2) $\angle 2$ and $\angle 3$

Consecutive Interior Angles

angles between the two lines and on the same side of the transversal

- 1) $\angle 1$ and $\angle 2$
- 2) $\angle 3$ and $\angle 4$

Parallel Lines

Line a is parallel to line b when

Corresponding angles	∠1 ≅ ∠5 , ∠2 ≅ ∠6 ,
are congruent	∠3 ≅ ∠7, ∠4 ≅ ∠8
Alternate interior	∠3 ≅ ∠6
angles are congruent	∠4 ≅ ∠5
Alternate exterior	∠1 ≅ ∠8
angles are congruent	∠2 ≅ ∠7
Consecutive interior	m∠3+ m∠5 = 180°
angles are	
supplementary	$m \angle 4 + m \angle 6 = 180^{\circ}$

Midpoint

divides a segment into two congruent segments

Example: M is the midpoint of CD

 $\overline{\mathsf{CM}}\cong\overline{\mathsf{MD}}$

CM = MD

Segment bisector may be a point, ray, line, line segment, or plane that intersects the segment at its midpoint.

Midpoint Formula

given points $A(x_1, y_1)$ and $B(x_2, y_2)$

midpoint M =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Slope Formula

ratio of vertical change to horizontal change

slope = m =
$$\frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Slopes of Lines

Parallel lines have the same slope.

Perpendicular lines have slopes whose product is -1.

Vertical lines have undefined slope.

Horizontal lines have 0 slope.

Example:

The slope of line p = -2. The slope of line $p = \frac{1}{2}$.

$$-2 \cdot \frac{1}{2} = -1$$
, therefore, $n \perp p$.

Distance Formula

given points A (x_1, y_1) and B (x_2, y_2)

AB =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The distance formula is based on the Pythagorean Theorem.

Line Symmetry

Point Symmetry

Rotation

Preimage	Image
A(-3,0)	A'(0,3)
B(-3,3)	B'(3,3)
C(-1,3)	C'(3,1)
D(-1,0)	D'(0,1)

Pre-image has been transformed by a 90° clockwise rotation about the origin.

Rotation

Pre-image A has been transformed by a 90° clockwise rotation about the point (2, 0) to form image A¹.

Reflection

Preimage	Image
D(1,-2)	D'(-1,-2)
E(3,-2)	E'(-3,-2)
F(3,2)	F'(-3,2)

Translation

Preimage	Image
A(1,2)	A'(-2,-3)
B(3,2)	B'(0,-3)
C(4,3)	C'(1,-2)
D(3,4)	D'(0,-1)
E(1,4)	E'(-2,-1)

Dilation

Preimage	Image
A(0,2)	A'(0,4)
B(2,0)	B'(4,0)
C(0,0)	C'(0,0)

Preimage	Image
Е	Ε'
F	F '
G	G'
Н	Η'

Perpendicular Bisector

a segment, ray, line, or plane that is perpendicular to a segment at its midpoint

Example:

Line s is perpendicular to \overline{XY} . M is the midpoint, therefore $\overline{XM} \cong \overline{MY}$. Z lies on line s and is equidistant from X and Y.

Constructions

Traditional constructions involving a compass and straightedge reinforce students' understanding of geometric concepts. Constructions help students visualize Geometry.

There are multiple methods to most geometric constructions. These cards illustrate only one method. Students would benefit from experiences with more than one method and should be able to justify each step of geometric constructions.

segment *CD* congruent to segment *AB*

Fig. 2

a perpendicular bisector of

a perpendicular to a line from point P not on the line

a perpendicular to a line from point P on the line

a bisector of $\angle A$

Fig. 1

Fig. 2

Fig. 3

Fig. 4

∠Y congruent to ∠A

line *n* parallel to line *m* through point *P* not on the line

an equilateral triangle inscribed

Fig. 2

a square inscribed in a circle

a regular hexagon inscribed

Fig. 1

Fig. 2

Fig. 3

Fig. 4

the inscribed circle of a triangle

Fig. 3

the circumscribed circle of a triangle

a tangent from a point outside a given circle to the circle

Triangles

Classifying Triangles

Scalene	Isosceles	Equilateral
No congruent	At least 2	3 congruent
sides	congruent sides	sides
No congruent	2 or 3	3 congruent
angles	congruent	angles
	angles	

All equilateral triangles are isosceles.

Classifying Triangles

Acute	Right	Obtuse	Equiangular
3 acute angles	1 right angle	1 obtuse angle	3 congruent angles
3 angles,	1 angle	1 angle	3 angles,
each less	equals 90°	greater	each measures
than 90°		than 90°	60°

Triangle Sum Theorem

measures of the interior angles of a triangle = 180°

$$m\angle A + m\angle B + m\angle C = 180^{\circ}$$

Exterior Angle Theorem

Exterior angle, m∠1, is equal to the sum of the measures of the two nonadjacent interior angles.

$$m \angle 1 = m \angle B + m \angle C$$

Pythagorean Theorem

If $\triangle ABC$ is a right triangle, then $a^2 + b^2 = c^2$.

Conversely, if $a^2 + b^2 = c^2$, then $\triangle ABC$ is a right triangle.

Angle and Side Relationships

∠A is the largest angle, therefore BC is the longest side.

∠B is the smallest angle, therefore AC is the shortest side.

Triangle Inequality Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Example:

$$AB + BC > AC$$
 $AC + BC > AB$
 $AB + AC > BC$

Congruent Triangles

Two possible congruence statements:

 $\triangle ABC \cong \triangle FED$

 Δ BCA $\cong \Delta$ EDF

Corresponding Parts of Congruent Figures

$\angle A \cong \angle F$	AB ≅ FE
∠B ≅ ∠E	BC ≅ ED
$\angle C \cong \angle D$	CA ≅ DF

SSS Triangle Congruence Postulate

Example:

If Side $\overline{AB} \cong \overline{FE}$,
Side $\overline{AC} \cong \overline{FD}$, and
Side $\overline{BC} \cong \overline{ED}$,
then Δ ABC $\cong \Delta$ FED.

SAS Triangle Congruence Postulate

Example:

If Side $\overline{AB} \cong \overline{DE}$,

Angle $\angle A \cong \angle D$, and
Side $\overline{AC} \cong \overline{DF}$,
then \triangle ABC $\cong \triangle$ DEF.

HL Right Triangle Congruence

Example:

```
If Hypotenuse \overline{RS} \cong \overline{XY}, and Leg \overline{ST} \cong \overline{YZ}, then \Delta RST \cong \Delta XYZ.
```

ASA Triangle Congruence Postulate

Example:

If Angle $\angle A \cong \angle D$,
Side $\overline{AC} \cong \overline{DF}$, and
Angle $\angle C \cong \angle F$ then \triangle ABC $\cong \triangle$ DEF.

AAS Triangle Congruence Theorem

Example:

If Angle $\angle R \cong \angle X$, Angle $\angle S \cong \angle Y$, and Side $\overline{ST} \cong \overline{YZ}$ then \triangle RST $\cong \triangle XYZ$.

Similar Polygons

ABCD ~ HGFE		
Angles Sides		
∠A corresponds to ∠H	AB corresponds to HG	
∠B corresponds to ∠G	BC corresponds to GF	
∠C corresponds to ∠F	CD corresponds to FE	
∠D corresponds to ∠E	DA corresponds to EH	

Corresponding angles are congruent.
Corresponding sides are proportional.

Similar Polygons and Proportions

Corresponding vertices are listed in the same order.

Example:
$$\triangle ABC \sim \triangle HGF$$

$$\frac{AB}{HG} = \frac{BC}{GF}$$

$$\frac{12}{x} = \frac{6}{4}$$

The perimeters of the polygons are also proportional.

AA Triangle Similarity Postulate

Example:

If Angle $\angle R \cong \angle X$ and Angle $\angle S \cong \angle Y$,

then $\Delta RST \sim \Delta XYZ$.

SAS Triangle Similarity Theorem

Example:

If
$$\angle A \cong \angle D$$
 and $\frac{AB}{DF} = \frac{AC}{DF}$

then $\triangle ABC \sim \triangle DEF$.

SSS Triangle Similarity Theorem

Example:

If
$$\frac{RT}{XZ} = \frac{RS}{XY} = \frac{ST}{YZ}$$

then $\Delta RST \sim \Delta XYZ$.

Altitude of a Triangle

a segment from a vertex perpendicular to the opposite side

Every triangle has 3 altitudes.

The 3 altitudes intersect at a point called the orthocenter.

Median of a Triangle

D is the midpoint of \overline{AB} ; therefore, \overline{CD} is a median of ΔABC . Every triangle has 3 medians.

Concurrency of Medians of a Triangle

Medians of $\triangle ABC$ intersect at P and $AP = \frac{2}{3}AF$, $CP = \frac{2}{3}CE$, $BP = \frac{2}{3}BD$.

30°-60°-90° Triangle Theorem

Given: short leg = xUsing equilateral triangle,
hypotenuse = $2 \cdot x$ Applying the Pythagorean Theorem,
longer leg = $x \cdot \sqrt{3}$

45°-45°-90° Triangle Theorem

Given: leg = x, then applying the Pythagorean Theorem; hypotenuse² = $x^2 + x^2$ hypotenuse = $x\sqrt{2}$

Geometric Mean

of two positive numbers *a* and *b* is the positive number *x* that satisfies

$$\frac{a}{x} = \frac{x}{b}.$$

$$x^2 = ab \text{ and } x = \sqrt{ab}.$$

In a right triangle, the length of the altitude is the geometric mean of the lengths of the two segments.

$$\frac{9}{x} = \frac{x}{4}$$
, so $x^2 = 36$ and $x = \sqrt{36} = 6$.

Trigonometric Ratios

$$\sin A = \frac{\text{side opposite } \angle A}{\text{hypotenuse}} = \frac{a}{c}$$

$$\cos A = \frac{\text{side adjacent } \angle A}{\text{hypotenuse}} = \frac{b}{c}$$

$$\tan A = \frac{\text{side opposite } \angle A}{\text{side adjacent to } \angle A} = \frac{a}{b}$$

Inverse Trigonometric Ratios

Definition	Example
If tan A = x , then tan ⁻¹ x = m \angle A.	D
	C
If $\cos A = z$, then $\cos^{-1} z = m \angle A$.	$\cos^{-1}\frac{b}{c} = m\angle A$

Area of Triangle

$$\sin C = \frac{h}{a}$$

$$h = a \cdot \sin C$$

$$A = \frac{1}{2}bh$$
 (area of a triangle formula)

By substitution,
$$A = \frac{1}{2}b(a \cdot \sin C)$$

$$A = \frac{1}{2}ab \cdot \sin C$$

Polygons and Circles

Polygon Exterior Angle Sum Theorem

The sum of the measures of the exterior angles of a convex polygon is 360°.

$$m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 + m\angle 5 = 360^{\circ}$$

Polygon Interior Angle Sum Theorem

The sum of the measures of the interior angles of a convex n-gon is $(n-2)\cdot 180^{\circ}$.

$$S = m \angle 1 + m \angle 2 + ... + m \angle n = (n - 2) \cdot 180^{\circ}$$

If
$$n = 5$$
, then $S = (5 - 2) \cdot 180^{\circ}$
 $S = 3 \cdot 180^{\circ} = 540^{\circ}$

Regular Polygon

a convex polygon that is both equiangular and equilateral

Equilateral Triangle Each angle measures 60°.

Square Each angle measures 90°.

Regular Pentagon Each angle measures 108°.

Regular Hexagon Each angle measures 120°.

Regular Octagon Each angle measures 135°.

Properties of Parallelograms

- Opposite sides are parallel and congruent.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- The diagonals bisect each other.

Rectangle

- A rectangle is a parallelogram with four right angles.
- Diagonals are congruent.
- Diagonals bisect each other.

Rhombus

- A rhombus is a parallelogram with four congruent sides.
- Diagonals are perpendicular.
- Each diagonal bisects a pair of opposite angles.

Square

- A square is a parallelogram and a rectangle with four congruent sides.
- Diagonals are perpendicular.
- Every square is a rhombus.

Trapezoid

- A trapezoid is a quadrilateral with exactly one pair of parallel sides.
- Isosceles trapezoid A trapezoid where the two base angles are equal and therefore the sides opposite the base angles are also equal.

Circle

all points in a plane equidistant from a given point called the center

- Point O is the center.
- \overline{MN} passes through the center O and therefore, \overline{MN} is a diameter.
- \overline{OP} , \overline{OM} , and \overline{ON} are radii and $\overline{OP} \cong \overline{OM} \cong \overline{ON}$.
- RS and MN are chords.

Circles

A polygon is an inscribed polygon if all of its vertices lie on a circle.

A circle is considered "inscribed" if it is tangent to each side of the polygon.

Circle Equation

circle with radius r and center at the origin

standard equation of a circle $(x - h)^{2} + (y - k)^{2} = r^{2}$ with center (h,k) and radius r

Lines and Circles

- Secant (AB) a line that intersects a circle in two points.
- Tangent (CD) a line (or ray or segment) that intersects a circle in exactly one point, the point of tangency, D.

Secant

If two lines intersect in the interior of a circle, then the measure of the angle formed is one-half the sum of the measures of the intercepted arcs.

$$m\angle 1 = \frac{1}{2}(x^{\circ} + y^{\circ})$$

Tangent

A line is tangent to a circle if and only if the line is perpendicular to a radius drawn to the point of tangency.

 \overline{QS} is tangent to circle R at point Q. Radius $\overline{RQ} \perp \overline{QS}$

Tangent

If two segments from the same exterior point are tangent to a circle, then they are congruent.

AB and AC are tangent to the circle at points B and C.

Therefore, $\overline{AB} \cong \overline{AC}$ and $\overline{AC} = \overline{AB}$.

Central Angle

an angle whose vertex is the center of the circle

∠ACB is a central angle of circle C.

Minor arc – corresponding central angle is less than 180°

Major arc – corresponding central angle is greater than 180°

MeasuringArcs

Minor arcs	Major arcs	Semicircles
$\widehat{\text{m AB}} = 110^{\circ}$	m BDA = 250°	$\widehat{\text{m ADC}} = 180^{\circ}$
m \widehat{BC} = 70°	m BAC = 290°	$\widehat{\text{m ABC}} = 180^{\circ}$

The measure of the entire circle is 360°. The measure of a minor arc is equal to its central angle. The measure of a major arc is the difference between 360° and the measure of the related minor arc.

Arc Length

$$\frac{\text{arc length of } \widehat{AB}}{2\pi \cdot 4} = \frac{120^{\circ}}{360^{\circ}}$$

arc length of
$$\widehat{AB} = \frac{8}{3} \pi$$
 cm

Secants and Tangents

$$m \angle 1 = \frac{1}{2}(x^{\circ} - y^{\circ})$$

Inscribed Angle

angle whose vertex is a point on the circle and whose sides contain chords of the circle

$$m\angle BAC = \frac{1}{2}m\widehat{BC}$$

Area of a Sector

region bounded by two radii and their intercepted arc

$$\frac{\text{area of sector}}{\pi r^2} = \frac{\text{measure of intercepted arc}}{360^{\circ}}$$

$$\frac{\text{area of sector ACB}}{\pi \cdot 4^2} = \frac{120^{\circ}}{360^{\circ}}$$

area of sector ACB =
$$\frac{16}{3}\pi$$
 cm

Inscribed Angle Theorem

If two inscribed angles of a circle intercept the same arc, then the angles are congruent.

Inscribed Angle Theorem

m \angle BAC = 90° if and only if \overline{BC} is a diameter of the circle.

Inscribed Angle Theorem

M, A, T, and H lie on circle J if and only if $m\angle A + m\angle H = 180^{\circ}$ and $m\angle T + m\angle M = 180^{\circ}$.

Segments in a Circle

If two chords intersect in a circle, then $a \cdot b = c \cdot d$.

$$12(6) = 9x$$

$$72 = 9x$$

$$8 = x$$

Segments of Secants Theorem

 $AB \cdot AC = AD \cdot AE$

$$6(6 + x) = 9(9 + 16)$$

$$36 + 6x = 225$$

$$x = 31.5$$

Segments of Secants and Tangents Theorem

$$25^2 = 20(20 + x)$$

$$625 = 400 + 20x$$

$$x = 11.25$$

Three-Dimensional Figures

Cone

solid that has a circular base, an apex, and a lateral surface

$$V = \frac{1}{3}\pi r^2 h$$

L.A. (lateral surface area) = πrl

S.A. (surface area) =
$$\pi r^2 + \pi r l$$

Cylinder

solid figure with congruent circular bases that lie in parallel planes

$$V = \pi r^2 h$$

L.A. (lateral surface area) = $2\pi rh$

S.A. (surface area) =
$$2\pi r^2 + 2\pi rh$$

Polyhedron

solid that is bounded by polygons, called faces

Similar Solids Theorem

If two similar solids have a scale factor of a:b, then their corresponding surface areas have a ratio of a²: b², and their corresponding volumes have a ratio of a³: b³.

cylinder A ~ cylinder B

Example			
scale factor	a:b	3:2	
ratio of surface areas	a ² : b ²	9:4	
ratio of volumes	a ³ : b ³	27:8	

Sphere

a three-dimensional surface of which all points are equidistant from a fixed point

$$V = \frac{4}{3}\pi r^3$$

S.A. (surface area) = $4\pi r^2$

Pyramid

polyhedron with a polygonal base and triangular faces meeting in a common vertex

$$V = \frac{1}{3}Bh$$

L.A. (lateral surface area) =
$$\frac{1}{2}lp$$

S.A. (surface area) =
$$\frac{1}{2}lp + B$$